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Abstract In this paper a generalized anisotropic hyper-

elastic constitutive model for fiber-reinforced materials is

proposed. Collagen fiber alignment in biological tissues is

taken into account by means of structural tensors, where

orthotropic and transversely isotropic material symmetries

appear as special cases. The model is capable to describe

the anisotropic stress response of soft tissues at large

strains and is applied for example to different types of

arteries. The proposed strain energy function is polyconvex

and coercive. This guarantees the existence of a global

minimizer of the total elastic energy, which is important in

the context of a boundary value problem.

Introduction

In soft biological tissues the distribution, arrangement and

interaction of the constituents lead to a diversity of

mechanical characteristics and thus high specificity and

functionality. In particular, the extracellular matrix plays

an important role. Its main constituents are proteins, gly-

cosaminoglycans as well as bound and unbound water, see

e.g., [1]. Among those proteins, different collagen types are

crucial for the mechanical properties of soft tissues. Indeed,

some collagen types form fibers or networks and thus

provide reinforcing structures. By ordered arrangement,

this finally leads to anisotropy. The alignment of these

structures is manifold and reaches from parallel fiber

bundles in tendons to helical arrangement in arteries and

two- and three-dimensional networks in skin, see e.g., [2].

Collagen fibers are usually crimped or undulated in a nat-

ural state. With increasing strain they line-up, straighten,

and finally become the main load bearing elements. As a

consequence, the stress response of soft tissue samples is in

general characterized by highly non-linear behavior with

J-shaped or nearly exponential stress-strain curves. Hence,

from a biomechanical perspective, both anisotropy and

non-linear behavior at large elastic strains should be

regarded by a constitutive model in order to describe soft

tissues appropriately. In the elastic domain, hyperelastic

models meet these requirements and have therefore

extensively been utilized in soft tissue mechanics.

The diversity among the mechanical characteristics of

soft tissues motivated a great number of constitutive for-

mulations for different tissue types. For example, the

reader is referred to [3] for a survey on strain energy

functions for planar biological tissues in connection with

biaxial testing techniques. Modeling approaches for vari-

ous components of the cardiovascular system the reader

may find in [1] and references therein. In particular, arterial

wall mechanics as well as several hyperelastic models for

arterial tissue are studied in [4]. Several strain energy

functions for myocardium have recently been compared by

Schmid et al. [5]. Although the major part of these models

is based on phenomenological approaches, a number of

micromechanically based models have been suggested. For

example, chain network models (see e.g., [6]), taking into

account single collagen fibrils by means of statistical

mechanics, have been applied to model orthotropic and

transversely isotropic soft tissues [7, 8]. Other authors

derived constitutive relations based on sinusoidal, zig-zag

or circular helix representations for the crimped collagen

fibers, see e.g., [9–11]. The material parameters appearing

in microstructurally based models generally have a
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physical meaning. However, estimation of these parameters

might be a difficult task in view of the variance among

individual tissue samples. In general, phenomenological

models are able to adequately describe the macroscopic

behavior of soft tissues observed in experiments and have

therefore wide applicability. Although the related material

parameters do not usually provide a clear physical inter-

pretation, they can be obtained by fitting the model to

experimental data. Notwithstanding, even within a phe-

nomenological approach it is preferable to include as much

information about the structure as possible. Thus, motivated

by the histological structure of blood vessels, Holzapfel

et al. [4] considered each layer of an arterial wall as a fiber-

reinforced composite of an isotropic matrix and two sym-

metrically arranged fiber helices. This led to a multi-layer

constitutive model with an elastic potential composed of an

isotropic part and an anisotropic part associated with the two

fiber contributions. In a recent paper, Gasser et al. [12] have

presented an approach to replace the mean fiber directions in

the latter model by a collagen fiber dispersion as experi-

mentally observed by means of polarized light microscopy.

Besides these biomechanical aspects, the issue of

material stability should be taken into account if the tissue

is assumed to maintain its integrity throughout the elastic

deformations. Possible criteria for material stability have

recently been discussed [13]. One of those is the strong

ellipticity condition, which also implicates positive defi-

niteness of the acoustic tensor so that the speed of dis-

placement waves is real for any direction of propagation.

Contrariwise, the loss of ellipticity has recently been used

to describe several failure mechanisms in fiber-reinforced

materials like, e.g., fiber kinking, splitting and de-bonding

[14, 15]. Investigation of ellipticity for several constitutive

models (see e.g., [16]) showed, for example, that the

so-called Fung elastic model [2, 17] widely and success-

fully applied to soft biological tissues is in general not

elliptic and that enforcement of the strong ellipticity con-

dition imposes severe restrictions on the material constants.

For polyconvex strain energy functions [18] on the other

hand, ellipticity is guaranteed (see e.g., [19]). Another

advantage of polyconvex functions appears in the context

of boundary value problems. The question whether there is

a solution of the boundary value problem is bound to the

existence of a global minimizer of the total elastic energy

of a body. According to Ball [18, 20] this minimizer exists

if the strain energy function is polyconvex and satisfies a

certain growth condition referred to as coercivity. Hence,

polyconvexity provides an excellent starting point to for-

mulate strain energy functions that guarantee both ellip-

ticity and existence of the global minimizer.

Instead of checking various anisotropic hyperelastic

models for polyconvexity, one can formulate polyconvex

strain energy functions from scratch. Schröder and Neff

[19] investigated polyconvexity of numerous functions of

isotropic and anisotropic strain invariants. On this basis,

they proposed a variety of polyconvex free energy terms

for a transversely isotropic material as well as an extension

for orthotropic materials. Furthermore, for these material

symmetries, sufficient conditions for the polyconvexity and

coercivity of the strain energy function were elaborated by

Steigmann [21]. Itskov and Aksel [22] presented a class of

transversely isotropic and orthotropic polyconvex and

coercive strain energy functions. An advantage of the latter

formulation is that the functions fulfill the condition of an

energy and stress-free undeformed configuration a priori.

Their hyperelastic model is based on a power series rep-

resentation with an arbitrary number of terms. A modified

version of the model, based on an exponential function

representation was successfully utilized to describe the

mechanical behavior of soft collagenous tissues by Itskov

et al. [23]. Balzani et al. [24] followed the approach by

Holzapfel [4] and presented a number of polyconvex strain

energies for soft biological tissues consisting of an isotro-

pic part and the superposition of several transversely iso-

tropic contributions. We remark that some of the material

parameters in these models should be restricted further to

prevent the initial stiffness associated with the fiber part

from being infinite. In the models [4, 24], the transversely

isotropic parts are switched off if the associated preferred

directions are under compression. This guarantees

convexity of the strain energy function, however, it leads

to purely isotropic behavior when all fibers are in a

compressive state.

In this paper we present a polyconvex anisotropic

hyperelastic constitutive model for materials consisting of

an isotropic matrix and reinforced by an arbitrary number of

fiber families. Each fiber family is explicitly taken into

account by a structural tensor and associated with a weight

factor. The model is formulated in terms of so-called gen-

eralized structural tensors. It is shown that for a material

reinforced by a single family of fibers, these tensors coin-

cide with a recently proposed structure tensor that includes

collagen fiber dispersion [12]. The model is developed in a

generalized form offering maximum flexibility for use with

different types of engineering materials and biological

tissues. Earlier models for orthotropic and transversely

isotropic materials are included as special cases.

The paper is organized as follows: We begin with the

basic mathematical notations and definitions as well as a

short discussion of hyperelasticity. Then, the generalized

structural tensors and a functional basis for the anisotropic

strain energy function are introduced. We proceed with the

derivation of the generalized polyconvex and coercive

strain energy function. Finally, numerical examples are

presented, showing special cases of the model in applica-

tion to arterial tissue.
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Preliminaries

Basic tensor operations

Let Lin be a set of all linear mappings of a three-dimen-

sional vector space R
3 over reals into itself. Lin represents

a finite-dimensional vector space with the inner product.

The elements of Lin are called second-order tensors.

Subsets of Lin are defined by Sym = {M [ Lin :

M = MT}, Orth = {Q [ Lin : Q = Q�T}, and Inv = {A [
Lin : detA = 0}, constituted by symmetric, orthogonal,

and invertible second-order tensors, respectively, where

detA denotes the determinant of a second-order tensor A.

Sym+ is a subset of Sym formed by all positive definite

symmetric second-order tensors. The adjugate of a second-

order tensor is denoted by adjA = A�1 detA and the

cofactor by cofA = A�T detA, where A [ Inv.

Let Lin be a set of all linear mappings of Lin into

itself so that B ¼ D : A; B 2 Lin; 8A 2 Lin; 8D 2 Lin.

The elements of Lin are called fourth-order tensors. They

can be constructed from second-order tensors by means of

the tensor products ‘‘�’’ and ‘‘�’’ such that (see e.g.,

[25])

A� B : C ¼ AðB : CÞ; A� B : C ¼ ACB;

A;B 2 Lin; 8C 2 Lin:
ð1Þ

Note that these definitions differ from notations in other

works. A simple composition of fourth-order tensors with

second-order ones is introduced by

ðADBÞ : C¼AðD : CÞB; D 2 Lin;A;B 2 Lin; 8C 2 Lin:

ð2Þ

The calculation of stresses and elasticity tensors requires

application of the derivative with respect to a tensor. This

derivative obeys the following product rules of

differentiation [26]

ðf AÞ;C ¼A� f ;C þ f A;C ;

ðABÞ;C ¼A;C Bþ AB;C ;
ð3Þ

where f, A, and B represent a scalar and two tensor-valued

differentiable tensor functions of C, respectively. The

notation (•)S indicates a symmetrization operation on

fourth-order tensors defined by (see e.g., [25])

D
S : A ¼ D :

1

2
Aþ AT
� �

; D 2 Lin; 8A 2 Lin: ð4Þ

A function f of several arguments, say x1, x2,…, xn, will

be abbreviated by the notation f ¼ f̂ ðxiÞ; i ¼ 1; 2; . . .; n.

Hyperelasticity

An elastic material is called hyperelastic if its elastic

behavior can be described by a strain energy function

W = WF(F) per unit reference volume, where F denotes the

deformation gradient. According to the principle of objec-

tivity, the strain energy has to be independent of superposed

rigid body motions. This requirement can automatically be

satisfied representing the strain energy function in terms of

the right Cauchy–Green tensor C = FTF so that

W ¼ WFðFÞ ¼ WCðCÞ: ð5Þ

For an unconstrained hyperelastic material, a

constitutive law can be given by (see e.g., [27])

S ¼ 2
oW

oC
; ð6Þ

where S denotes the second Piola–Kirchhoff stress tensor.

The material time derivative of Eq. (6) yields

_S ¼ C :
1

2
_C; ð7Þ

where C is the tangent tensor of fourth order defined by

C ¼ 2
oS

oC
¼ 4

o2W

oCoC
: ð8Þ

For constrained materials, the constitutive law takes the

form

S ¼ 2
oW

oC
þ q

of
oC

; ð9Þ

with an arbitrary scalar q and a function f accounting for

the kinematic constraint f(C) = 0. Accordingly, the stress

rate and the tangent tensor of fourth order are given by (see

e.g., [28])

_S ¼ C :
1

2
_Cþ _q

of
oC

; C ¼ 4
o2W

oCoC
þ 2q

o2W

oCoC
: ð10Þ

Anisotropic strain energy functions

Material symmetry

The symmetry group G of a material is a set of all

orthogonal mappings which preserve the material symme-

try. For anisotropic materials, the symmetry group can be

defined with the aid of structural tensors Li, i = 0,1,…,n as
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G ¼ Q 2 Orth : QLiQ
T ¼ Li; i ¼ 0; 1; . . .; n

� �
: ð11Þ

For a hyperelastic material, the condition of material

symmetry is written in terms of the strain energy function

(5) and the symmetry group (11) by

WCðQCQTÞ ¼ WCðCÞ; 8Q 2 G: ð12Þ

According to Rychlewski’s theorem [29], this condition

is satisfied if and only if the strain energy can be

represented as an isotropic tensor function of arguments

containing the structural tensors. In view of (11) one can

thus write (see e.g., [22])

WCLðQCQT;QLiQ
TÞ ¼ WCLðC;LiÞ;

i ¼ 0; 1; . . .; n; 8Q 2 Orth:
ð13Þ

At first, we consider a general fiber-reinforced material

consisting of an isotropic matrix and an arbitrary number n

of fiber families as schematically shown in Fig. 1. Let the

alignment direction of each fiber family be given by a unit

vector mi, i = 1,2,...,n. Then we define n + 1 structural

tensors Li, i = 0,1,...,n by

Li ¼ mi �mi; L0 ¼
1

3
I; i ¼ 1; 2; . . .; n; ð14Þ

where I denotes the identity tensor of second order. The

tensor L0 is assumed to be associated with the isotropic

matrix. In the next step, we form linear combinations of the

tensors (14) and thus define so-called generalized structural

tensors by

~Lr ¼
Xn

i¼0

v
ðrÞ
i Li;

Xn

i¼0

v
ðrÞ
i ¼ 1; r ¼ 1; 2; . . .; ð15Þ

where vi
(r) � 0, i = 0,1,...,n denote scalar weight factors.

Note that both the structural tensors (14) and the general-

ized structural tensors (15) are characterized by the prop-

erty trLi ¼ tr~Lr ¼ 1; i ¼ 0; 1; . . .; n; r ¼ 1; 2; . . ..

For orthotropic and transversely isotropic materials,

another set of generalized structural tensors has recently

been presented [22]. Orthotropy is characterized by sym-

metry with respect to three mutually orthogonal planes by

reflections from which the material properties remain

unchanged. The axes normal to these planes are referred to

as the principal material directions. Introducing unit vec-

tors li; i ¼ 1; 2; 3; in these directions allows to form the

structural tensors (see e.g., [22])

bL1 ¼ l1 � l1; bL2 ¼ l2 � l2;

bL3 ¼ I� bL1 � bL2 ¼ l3 � l3;
ð16Þ

where a superposed hat serves to distinguish them from

those associated with fiber directions (14). Transverse

isotropy represents a material symmetry with respect to

only one preferred direction. Rotations about this axis and

reflections from planes parallel or orthogonal to it preserve

the material properties. Specifying this principal material

direction by a unit vector l1; two structural tensors can be

defined by (see e.g., [22])

bL1 ¼ l1 � l1; bL2 ¼
1

2
I� L1½ �: ð17Þ

In a similar manner as (15), linear combinations of the

tensors (16) or (17) lead to the generalized structural

tensors (cf. [22, 23])

~Lr ¼
Xm

i¼1

w
ðrÞ
i
bLi;

Xm

i¼1

w
ðrÞ
i ¼ 1; r ¼ 1; 2; . . .; ð18Þ

where m = 3 for orthotropy, m = 2 for transverse isotropy

and wi
(r) � 0 denote scalar weight factors. In fiber-rein-

forced materials orthotropy and transverse isotropy arise as

special cases. Indeed, certain arrangement of two or more

fiber families may lead to orthotropic material symmetry

and one or more fiber families aligned in one single

direction result in transverse isotropy (see e.g., [30]). In

this case, the generalized structural tensors defined by (15)

and (18) should coincide so that consequently the weight

factors wi
(r), i = 1,2,…,m, associated with principal material

directions (16, 17) are related to the factors vi
(r),

i = 0,1,…,n, weighting the fiber directions (14) (see

Appendix).

In a recent work [12], the dispersion of collagen fibers

was included into a constitutive model for arterial tissue.

Therein, it is assumed that the fiber distribution is char-

acterized by rotational symmetry about a mean preferred

direction given by the unit vector a0. As a measure for the

fiber distribution, a scalar parameter j is introduced such

that a so-called structure tensor H takes the form [12]

H ¼ jIþ ð1� 3jÞa0 � a0: ð19Þ
Fig. 1 General fiber-reinforced material
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It is seen that the same form is also obtained as a special

case of (15), setting n ¼ 1; m1 ¼ a0 and v0
(r) = 3j, which

underlines the physical interpretability of the weight

factors.

Functional basis

The right Cauchy–Green tensor C and the structural tensors

(14) form a finite system of tensors. According to Hilbert’s

theorem, one can find a finite set of isotropic invariants Vk,

k = 1,2,...,t of these tensors called the functional basis, in

terms of which all other isotropic invariants can be

expressed. Thus in view of (13), one can write

W ¼ Ŵ Vkð Þ; k ¼ 1; 2; . . .; t: ð20Þ

Let us first consider the case where all fiber families are

either parallel or mutually orthogonal. Then, taking into

account the symmetry of C and Li, i = 1,2,...,n, and

applying the classical invariant theory (see e.g., [25, 31]), a

functional basis can be given by

V1 ¼ trC; V2 ¼ trC2; V3 ¼ trC3;
V3þi ¼ tr CLi½ �; V3þnþi ¼ tr C2Li

� �
; i ¼ 1; 2; . . .; n;

ð21Þ

see also [30]. For a general fiber-reinforced material with

arbitrary fiber alignment, the functional basis (21) is

completed by the invariants

tr CLiLj

� �
; tr LiLj

� �
; tr LiLjLk

� �
; i\j\k ¼ 1; 2; . . .; n:

ð22Þ

In regard to the constitutive modeling, however, it is

useful to restrict the arguments of the strain energy

function. The invariants (22)2,3 are constants and will be

neglected for this reason. Further, we omit the dependence

of the strain energy on the coupled terms (22)1 which

reflect deformations of the fiber families mp and mq

relative to each other. Accordingly, in the following, we

reduce the list of arguments of the strain energy to the

invariants (21) even in the case of an arbitrary fiber

orientation and set t = 3 + 2n.

Polyconvex strain energy functions

Polyconvexity

A strain energy function W ¼ WFðFÞ : Inv! R is said to

be polyconvex [18] if there exists a convex function

W ¼ �WðF; adjF; detFÞ : ðInv; Inv;RþÞ ! R such that

WFðFÞ ¼ �WðF; adjF; detFÞ: ð23Þ

The arguments F, adjF and detF describe the deformation

of line, surface and volume elements, respectively. A

subclass of polyconvex functions (23) can be obtained by

the additive representation [19]

WFðFÞ ¼ �W1ðFÞ þ �W2ðadjFÞ þ �W3ðdetFÞ; ð24Þ

where �Wi; i ¼ 1; 2; 3, are convex functions of their argu-

ment, respectively.

We recall the following basic property of convex

functions: Let uðAÞ : Inv! R be convex and p : R! R

be convex and monotone increasing, then p(u(B)) is con-

vex. Indeed, for some B1, B2 [ Inv and k [ [0, 1], we have

p uðkB1 þ ð1� kÞB2Þð Þ� p kuðB1Þ þ ð1� kÞuðB2Þð Þ
ð25Þ

due to the convexity of u and monotonicity of p. Since the

latter is also convex we can further write

p kuðB1Þ þ ð1� kÞuðB2Þð Þ�kpðuðB1ÞÞ þ ð1� kÞpðuðB2ÞÞ
ð26Þ

which implies convexity of p(u(B)).

Now let us consider the convexity properties of the in-

variants Vk, k = 1,2,...,t, (21), bearing in mind the

requirements for polyconvex functions (23). Indeed it can

be shown that the invariants V3+n+i, i = 1,2,...,n, are not

convex with respect to F, while the remaining ones in (21)

satisfy this condition [19]. However, on the basis of the

Cayley–Hamilton theorem, the invariants (21) can be

expressed uniquely in terms of other invariants [22]

Ii ¼ tr CLi½ �; Ji ¼ tr ðcofCÞLi½ �; IIIC ¼ detC;

i ¼ 0; 1; . . .; n;
ð27Þ

which are convex with respect to F, adjF and detF,

respectively [19], and thus provide a suitable basis to

formulate polyconvex functions. On account of the positive

semi-definiteness of the structural tensors (14), we notice

the following important property

Ii [ 0; Ji [ 0; i ¼ 0; 1; . . .; n: ð28Þ

The convexity properties remain unaffected by forming

linear combinations of the invariants (27)1,2 with non-

negative weight factors (see e.g., [32]). Thus, in view of

(15) one can define generalized invariants based on the

generalized structural tensors as

~Ir ¼
Xn

i¼0

v
ðrÞ
i Ii ¼ tr C~Lr

� �
; ~Jr ¼

Xn

i¼0

v
ðrÞ
i Ji ¼ tr ðcofCÞ~Lr

� �
;

r ¼ 1; 2; . . .; ð29Þ
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which are likewise convex with respect to F and adjF,

respectively. The definitions (27) and (29) finally allow to

represent the strain energy function in the form

W ¼ ~Wð~Ir; ~Jr; IIICÞ; r ¼ 1; 2; . . .: ð30Þ

Utilizing the additive representation (24), a set of

polyconvex strain energy functions can hence be

constructed by

W ¼ 1

4

Xs

r¼1

lr fr
~Ir

� �
þ gr

~Jr

� �
þ hr III

1=2
C

� �h i
; ð31Þ

where lr � 0 are material parameters with the dimension

of stress. According to the above mentioned statement

about convexity, the functions fr and gr are convex and

monotone increasing functions of their arguments, while hr

are convex with respect to IIIC
1/2 = detF. The strain energy

function is given in terms of a series with an arbitrary

number of terms s, which offers wide flexibility in appli-

cation to experimental data. Nevertheless, truncating the

series after the first term, so that s = 1, is often sufficient to

describe experimental results adequately as, e.g., shown in

the numerical examples presented hereinafter.

In the next step, we consider the condition of the energy

and stress free undeformed configuration. To this end, we

set C = I and require

W jC¼I¼
1

4

Xs

r¼1

lr fr 1ð Þ þ gr 1ð Þ þ hr 1ð Þ½ � ¼ 0: ð32Þ

Applying (6), the condition of a stress free undeformed

state reads as

SjC¼I¼ 2
oW

oC

				
C¼I

¼ 1

2

Xs

r¼1

lr f 0r 1ð Þ � g0r 1ð Þ
� �

~Lr




þ g0r 1ð Þ þ 1

2
h0r 1ð Þ

� �
I



¼ 0: ð33Þ

It is observed that the hyperelastic model (31) a priori

fulfills the condition of the energy and stress free

undeformed configuration whenever

fr 1ð Þ ¼ gr 1ð Þ ¼ hr 1ð Þ ¼ 0; r ¼ 1; 2; . . .; s;
f 0r 1ð Þ ¼ g0r 1ð Þ ¼ � 1

2
h0r 1ð Þ ¼ 1; r ¼ 1; 2; . . .; s:

ð34Þ

Note that the conditions (34) coincide with those

imposed on the so-called generalized strain measures [33].

Equation (31) represents the natural generalization of

the strain energy functions suggested in [22, 23] from two

perspectives. On the one hand, the set of structural tensors

(14) allows to include any fiber reinforcement geometry

and thus extends the applicability of the previous model

defined for orthotropic or transversely isotropic materials.

On the other hand, the generalized representation (31)

enables to account for various material characteristics in a

straightforward manner by an appropriate choice of any

convex and monotone increasing functions fr, gr and a

convex function hr satisfying (34). Clearly, the earlier

models can be obtained as special cases. Indeed, for fiber

orientations with orthotropic or transversely isotropic

symmetry, the power functions

frð~IrÞ ¼
1

ar

~Iar
r � 1
� �

; grð~JrÞ ¼
1

br

~Jbr
r � 1

� �
;

hrðIII1=2
C Þ ¼

1

cr

III
�cr

C � 1
� �

ð35Þ

recover the strain energy proposed in [22] and showing

good agreement with experiments on calendered rubber,

where ar � 1, br � 1, cr > 0 denote material constants.

Setting

frð~IrÞ ¼ 1
ar

ear
~Ir�1ð Þ � 1

h i
; grð~JrÞ ¼ 1

br
ebr

~Jr�1ð Þ � 1
h i

;

hrðIII1=2
C Þ ¼ 1

cr
III
�cr

C � 1
� �

;

ð36Þ

where ar � 0, br � 0, cr > 0, yields the exponential

model successfully utilized to describe pericardial tissue

and rabbit skin in [23].

Coercivity

For the existence of a global minimizer of the total elastic

energy of a body, polyconvexity of the strain energy

function is not sufficient. The strain energy function

additionally has to satisfy a growth condition referred to as

coercivity [18, 20]. The coercivity condition can be

formulated as [34, 35]

WðCÞ� c0 ðtrCÞp þ ðtrðcofCÞÞq½ � � c1; 8C 2 Symþ ð37Þ

with real, scalar valued constants c0 [ 0; p� 1; q� 3
4

and

c1. Inserting (31) into (37) one finds that (37) holds if

1
4

Ps

r¼1

lrfr
~Ir

� �
� c0ðtrCÞp� d1;

1
4

Ps

r¼1

lrgr
~Jr

� �
� c0ðtrðcofCÞÞq� d2;

1
4

Ps

r¼1

lrhr III
1=2
C

� �
� d3;

ð38Þ

where d1 + d2 + d3 = �c1. Keeping in mind that fr and gr

are convex, we can use the basic statement for convex

functions that the first order approximation of a convex

function globally underestimates the function (see e.g.,

[32]). Thus, expanding fr and gr in series around the natural
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state and truncating these series after the linear term we

have in consideration of (34)

fr
~Ir

� �
� fr 1ð Þ þ f 0r 1ð Þ ~Ir � 1

� �
¼ ~Ir � 1
� �

;

gr
~Jr

� �
�gr 1ð Þ þ g0r 1ð Þ ~Jr � 1

� �
¼ ~Jr � 1
� �

; r ¼ 1;2; . . .; s:

ð39Þ

Consequently, in view of (29), the conditions (38)1,2 are

satisfied if

1
4

Ps

r¼1

lr

Pn

i¼0

v
ðrÞ
i Ii � 1

� �
� c0ðtrCÞp� d1;

1
4

Ps

r¼1

lr

Pn

i¼0

v
ðrÞ
i Ji � 1

� �
� c0ðtrðcofCÞÞq� d2:

ð40Þ

Bearing in mind (14)2 and (27)1,2 and choosing

p = q = 1, one can rearrange the latter inequalities as

1
12

Ps

r¼1

lrv
ðrÞ
0 �c0

� �
trCþ1

4

Ps

r¼1

lr

Pn

i¼1

v
ðrÞ
i Ii�1

� �
�d1�0;

1
12

Ps

r¼1

lrv
ðrÞ
0 �c0

� �
trðcofCÞþ1

4

Ps

r¼1

lr

Pn

i¼1

v
ðrÞ
i Ji�1

� �
�d2�0:

ð41Þ

Taking into account the positive definiteness of Ii and Ji

(28), it is seen that the conditions (41) can easily be

fulfilled, setting c0¼1=12
Ps

r¼1lrv
ðrÞ
0 and d1¼d2¼

�1=4
Ps

r¼1lr . Finally, to satisfy the condition (38)3 we

assume the functions hr(IIIC
1/2) to be bounded below with a

lower bound, say jr, such that

hrðIII1=2
C Þ� jr; r ¼ 1; 2; . . .; s; 8III1=2

C 2 R
þ: ð42Þ

In doing so, we find that condition (38)3 is satisfied

setting d3 ¼ 1=4
Ps

r¼1 lrjr . Thus, equations (41) and (42)

imply (37).

Constitutive relations and tangent moduli

In the following, expressions for the second Piola–Kirch-

hoff stress and the tangent tensor are derived. Inserting the

strain energy function (31) into the constitutive relation (6),

the second Piola–Kirchhoff stress tensor calculates to

S ¼ 1

2

Xs

r¼1

lr f 0r ~Ir

� �
~Lr � g0r ~Jr

� �
IIICC�1 ~LrC

�1
�

þ g0r ~Jr

� �
~Jr þ

1

2
h0r III

1
2

C

� �
III

1
2

C

� �
C�1



: ð43Þ

Applying the product rules of differentiation (3), the

tangent tensor (8) is written as

C¼
Xs

r¼1

lr f 00r ~Ir

� �
~Lr� ~Lr




þg00r ~Jr

� �
III2

C C�1 ~LrC
�1�C�1 ~LrC

�1
� �

� g0r ~Jr

� �
þg00r ~Jr

� �
~Jr

� �
IIIC C�1�C�1 ~LrC

�1
�

þC�1 ~LrC
�1�C�1

�

þ g0r ~Jr

� �
~Jrþg00r ~Jr

� �
~J2
r þ

1

4
h0r IIIC

1
2

� �
IIIC

1
2

�

þ1

4
h00r IIIC

1
2

� �
IIIC

�
C�1�C�1

� g0r ~Jr

� �
~Jrþ

1

2
h0r IIIC

1
2

� �
IIIC

1
2

� �
C�1�C�1
� �S

þg0r ~Jr

� �
IIIC C�1�C�1 ~LrC

�1þC�1 ~LrC
�1�C�1

� �S
o
:

ð44Þ

In vivo, biological soft tissues contain a large amount of

water and thus show a very slight compressibility. In the

constitutive modeling they are often considered as

incompressible. The incompressibility constraint IIIC = 1

can be taken into account setting the constraint function f
in (9) to

fðCÞ ¼ III
1
3

C � 1: ð45Þ

Keeping (34) in mind, the strain energy function (31) for

an incompressible material is then given by

W ¼ 1

4

Xs

r¼1

lr fr
~Ir

� �
þ gr

~Kr

� �� �
; ~Kr ¼ tr C�1 ~Lr

� �
; ð46Þ

where the invariants ~Kr result from ~Jr under the constraint

IIIC = 1. In this case, straightforward insertion of (45) and

(46) into (9) and (10) yields the expressions for the second

Piola–Kirchhoff stress tensor

S ¼ 1

2

Xs

r¼1

lr f 0r ~Ir

� �
~Lr � g0r ~Kr

� �
C�1 ~LrC

�1
� �

þ 1

3
qC�1;

ð47Þ

and the tangent tensor of fourth order

C¼
Xs

r¼1

lr f 00r ~Ir

� �
~Lr�~Lrþg00r ~Kr

� �
C�1 ~LrC

�1�C�1 ~LrC
�1

� ��

þg0r ~Kr

� �
C�1�C�1 ~LrC

�1þC�1 ~LrC
�1�C�1

� �S

þ2

3
q

1

3
C�1�C�1� C�1�C�1

� �S
� �


:

ð48Þ
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Numerical examples

In this section, the constitutive model (31) is specified and

applied to two different sets of experimental data on human

arterial tissue. Arteries are composed of three distinct

layers called intima, media and adventitia. In constitutive

modeling, each layer is often considered as an incom-

pressible fiber-reinforced composite with two mechanically

equivalent families of collagen fibers that form symmetri-

cal helices tilted by an angle ±u against the circumferential

direction [4, 13, 36].

Coronary arteries

In a recent work, Holzapfel et al. [36] have studied the

layer-specific mechanical properties of human coronary

arteries with non-atherosclerotic intimal thickening in

cyclic uniaxial quasi-static tension tests. Therein, strips

from left anterior descending coronary arteries were split

into the adventitial, medial and intimal layer and finally

loaded such that the principal axes of deformation coin-

cided with the circumferential, axial and radial direction of

the vessel. For each strip sample, the recorded stress

response for loading in circumferential and axial direction

was modeled using a hyperelastic constitutive model based

on the above mentioned fiber-reinforcement assumption

(see [36] for details).

In order to describe the mechanical behavior of the

arterial tissue samples, we first specialize the polyconvex

strain energy function (31). To this end, we choose

appropriate formulations for the functions fr, gr and hr. For

all three arterial layers, a clearly exponential shape of the

stress-stretch curves is observed and thus the representation

(36) appears to be suitable. Furthermore, we assume that

each layer can be described as an incompressible rein-

forced material with two equivalent families of fibers

arranged by an angle ±u as described above. Introducing

unit vectors eh and ez in the circumferential and axial

direction of the artery, respectively, the orientations of the

two fiber families are given by the vectors

m1 ¼ cos ueh þ sin uez; m2 ¼ cos ueh � sin uez: ð49Þ

Applying formulae (14, 15, 29, 462) and taking into

account the mechanical equivalence of the fiber families,

so that v2
(r) = v1

(r), one obtains the generalized invariants

~Ir ¼ 1
3

1� 2v
ðrÞ
1

� �
ðk2

h þ k2
z þ ðkhkzÞ�2Þ

þ2v
ðrÞ
1 k2

h cos2 uþ k2
z sin2 u

� �
;

~Kr ¼ 1
3

1� 2v
ðrÞ
1

� �
ðk�2

h þ k�2
z þ ðkhkzÞ2Þ

þ2v
ðrÞ
1 k�2

h cos2 uþ k�2
z sin2 u

� �
;

ð50Þ

where kh and kz denote the principal stretches in

circumferential and axial direction, respectively.

Furthermore, the incompressibility constraint khkzkr = 1

has been taken into account, where kr denotes the radial

stretch. Considering one single term s = 1 in the series

representation (46) we have in view of (36) (cf. [23])

�W ¼ l
4

1

a
exp a ~I�1

� �� �
�1

� �
þ 1

b
exp b ~K� 1

� �� �
�1

� �
 

;

ð51Þ

where the index ‘‘1’’ has been omitted for the sake of

clarity and ~I and ~K are given by (50). Note that by this

means, we reduce the set of unknown material constants

to l,a,b,v1 and the angle u. With these results at hand, and

assuming that the lateral directions are stress free in the

uniaxial tension test, the Cauchy stresses in circumferential

and axial direction are calculated, respectively, by

rh ¼ kh
o �W

okh
; rz ¼ kz

o �W

okz
: ð52Þ

This model was fitted and compared to the experimental

results from one sample (specimen IX in [36]). In this way,

the parameters l,a,b,v1 and u were determined for each

layer, where u was likewise treated as a phenomenological

parameter regardless of its physical interpretability. The

experimental and model results are presented as Cauchy

stress versus stretch diagrams in Fig. 2 together with the

values of the material parameters. For all three layers

accurate agreement is observed.

Abdominal aorta

Vande Geest et al. [37] have studied the age dependency of

the mechanical behavior of the human abdominal aorta in

biaxial tension-controlled tests. To this end, infrarenal

abdominal aortic square samples were biaxially loaded in

circumferential and axial direction. Different protocols

varying in the ratio between circumferential and axial

tension, Thh:Tzz, were applied (see [37] for details). An

interesting result is the difference in the form of the stress

responses of samples obtained from different age groups.

Given as second Piola–Kirchhoff stress versus Green–

Lagrange strain, the curves change from a sigmoidal shape

in the youngest group (<30 years) to an exponential nature

in the older ones. As no data on the single layers of the

arteries are available, we consider the whole artery as an

incompressible fiber-reinforced material with two sym-

metrically arranged fiber helices as described above for the

single layers. Thus, assuming that the principal axis of

deformation coincide with the circumferential, axial and

radial direction, the fiber orientation and generalized
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invariants are again calculated according to (49) and (50).

In particular, we focus on the stress response of the young

arteries. Their s-shaped stress-strain curves show a

noticeable similarity to those obtained in experiments with

rubber materials (see e.g., [38]). For this reason, we choose

the functions fr and gr in a logarithmic form motivated by

the Gent model for rubber elasticity [39]. Setting s = 1 in

(36), this leads to

�W ¼ l
4
�a ln 1�

~I � 1

a

� �
� b ln 1�

~K � 1

b

� �
 

; ð53Þ

wherein a > 0, b > 0 are material parameters determining

the limiting values of ~I � 1 and ~K � 1, respectively.

Assuming that the radial direction is stress free, the

second Piola–Kirchhoff stresses in circumferential and

axial direction can be calculated, respectively, by

Sh ¼ k�1
h

o �W

okh
; Sz ¼ k�1

z

o �W

okz
: ð54Þ

We fitted the model (53) to the results of the test

protocols with Thh:Tzz ratios 0.5:1, 1:1, and 1:0.5,

considering specimen 3 in [37]. The results are shown in

Fig. 3 together with the data obtained from the plots in

[37]. In the next step, the parametrized model was used to

predict the stress in circumferential and axial direction for

the remaining protocols 0.75:1 and 1:0.75. The simulated

as well as the experimental values are presented in Fig. 4

and show good agreement.

In both examples, identification of the material param-

eters was achieved by means of least-squares and a

Levenberg–Marquardt type algorithm. It should be noted

that the experimental data was obtained from printed dia-

grams which might have led to some slight inaccuracies.
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Fig. 2 Comparison of the polyconvex model (51) with experimental

data on coronary artery layers [36]
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Fig. 3 Comparison of the polyconvex model (53) with experimental

data [37]. Material constants: l = 81.048 kPa, a = 2.060, b = 0.408,

v1 = 0.498, u = 47.59�
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These are, however, considered negligible in comparison to

the variation in data among individual tissue samples.

Conclusions

In the present paper we have presented a generalized

polyconvex and coercive strain energy function for fiber-

reinforced materials. The model is able to take into account

the collagen fiber structure of soft biological tissues. The

strain energy function is given in a generalized form

offering wide flexibility in application to different types of

tissue. For example, the model agreed appropriately with

the mechanical behavior of arterial tissue in various

experiments. The agreement was achieved with a small

number of material constants, some of which allow for a

physical interpretation. Further, the model adequately

predicted the stress response for loading conditions which

had not been considered for parameter identification. As a

result of polyconvexity and coercivity the model is elliptic

for all admissible strains and guarantees the existence of a

solution of a boundary value problem.

As previously mentioned, the mechanical characteristics

vary among different kinds of tissue. For this reason, fur-

ther evaluation of the capacities of the model in application

to other tissue types and various test protocols might be

useful and is going to be conducted.

Appendix

Relations between the generalized structural tensors

(15) and (18)

In the following, the relations between the weight factors

wi
(r), i = 1,...,n, associated with principal material

directions (18) and the factors vi
(r), i = 0,1,...,n, related to

matrix and fibers (15) are given for some basic fiber

constellations.

Unidirectional alignment of one family of fibers leads to

transverse isotropy with respect to the fiber direction.

Setting n = 1 in (15)1 and insertion of (14)1, (15)2 leads in

view of (17)2 to

~Lr ¼ v
ðrÞ
0 L0 þ v

ðrÞ
1 L1 ¼

1

3
1� v

ðrÞ
1

� �
Iþ v

ðrÞ
1 L1

¼ 1

3
1þ 2v

ðrÞ
1

� �
bL1 þ

2

3
1� v

ðrÞ
1

� �
bL2:

In a fiber reinforced material, orthotropy may be the

result of different fiber configurations. We first consider the

case where fibers are aligned in three mutually orthogonal

fiber directions coinciding with the principal material

directions, so that li ¼ mi; i ¼ 1; 2; 3. Then, in view of

(15,16,18) one obtains

~Lr ¼
1

3

X3

i¼1

1� v
ðrÞ
1 � v

ðrÞ
2 � v

ðrÞ
3 þ 3v

ðrÞ
i

h i
bLi:

A material with two orthogonal fiber families is

likewise orthotropic, where the principal directions are

given by the two fiber directions, so that l1 ¼ m1 and

l2 ¼ m2, and the direction normal to the plane in which the

fibers lie. The generalized structural tensors (18) are thus

given by

~Lr ¼
1

3
1þ 2v

ðrÞ
1 � v

ðrÞ
2

h i
bL1 þ

1

3
1� v

ðrÞ
1 þ 2v

ðrÞ
2

h i
bL2

þ 1

3
1� v

ðrÞ
1 � v

ðrÞ
2

h i
bL3:

Two equivalent families of fibers (v2
(r) = v1

(r)) aligned in

two arbitrary directions result in orthotropy. The principal

material directions are given by the bisectors of the two

fiber directions and the normal to the plane in which the

fibers lie. The fiber directions can be expressed in terms of

the principal material directions by

m1 ¼ cos a l1 þ sin a l2; m2 ¼ cos a l1 � sin a l2;

where the angle between the fibers is 2a. Hence, the

generalized structural tensors read as

~Lr ¼
1

3
1þ ð6 cos2 a� 2ÞvðrÞ1

h i
bL1

þ 1

3
1þ ð6 sin2 a� 2ÞvðrÞ1

h i
bL2 þ

1

3
1� 2v

ðrÞ
1

h i
bL3:

Finally, if there is a third fiber family i = 3 aligned

normal to the plane spanned by the mechanically

equivalent fiber families, we have
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Fig. 4 Experimental data [37] and prediction by the polyconvex

model (53)
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~Lr ¼
1

3
1þ ð6 cos2 a� 2ÞvðrÞ1 � v

ðrÞ
3

h i
bL1

þ 1

3
1þ ð6 sin2 a� 2ÞvðrÞ1 � v

ðrÞ
3

h i
bL2

þ 1

3
1� 2v

ðrÞ
1 þ 2v

ðrÞ
3

h i
bL3:

Additionally, superposition of several of the given cases

may preserve the orthotropic material symmetry.
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